2014考研数学备考重点解析 ——一维随机变量函数的分布 file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image002.png 随机变量函数的定义:设file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image004.png是一个定义于file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image006.png的函数(file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image004.png一般为连续函数),随机变量X的函数file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image008.png是指这样的一个随机变量Y:当X取值x时,它取值file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image010.png,记作file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image012.png 一、离散型:当X为离散型随机变量时,已知X的分布律,求file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image012.png的布律. 设file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image015.png,则file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image010.png的分布律为: file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image017.png 注:取相同file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image019.png值对应的那些概率应合并相加 二、连续型:当file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image021.png为连续随机变量时,已知X的概率密度,求file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image012.png的概率密度. 为求file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image012.png的概率密度,通常先求它的分布函数(即分布函数法) 设file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image021.png的概率密度为file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image025.png,则file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image010.png的分布函数为: 对file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image027.png,file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image029.png 其中file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image031.png是与file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image033.png相等的随机事件,而file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image035.png是实数轴上某个集合(通常可以表示为一个区间或若干区间的并集). 注:1.如果file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image037.png,当file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image039.png时,file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image041.png,特别,file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image043.png. 2.通常连续型随机变量file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image021.png的概率密度是分段函数大学考研,所以用分布函数法的时候,最重要的是讨论各种情况. 【例1】设file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image021.png的分布律为: file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image047.png 求file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image049.png的分布律. 【解析】 file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image051.png 【例2】设随机变量X的概率密度为file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image053.png F(x)是X的分布函数.求随机变量Y=F(X)的分布函数. 【解析】本题主要考查一维连续型随机变量大学考研函数的分布,我们用分布函数法进行讨论. 易见,当x<1时,F(x)=0; 当x>8时,F(x)=1. 对于x∈[1,8],有file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image055.png 设G(y)是随机变量Y=F(X)的分布函数.显然,当y≤0时,G(y)=0;当y≥1时,G(y)=1. 对于y∈(0,1),有 file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image057.png =P{X≤(y+1)3}=F[(y+1)3]=y. 于是,Y=F(X)的分布函数为 file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtmlclip1/01/clip_image059.png
|